wave function

[SQA]	1. Express $8 \cos x^\circ - 6 \sin x^\circ$ in the form $k \cos(x^\circ + a^\circ)$ where $k > 0$ and 0	a < 360. 4
[SQA]	2. (a) Write $sin(x) - cos(x)$ in the form $k sin(x - a)$ stating the values where $k > 0$ and $0 \le a \le 2\pi$	s of k and a
	(<i>b</i>) Sketch the graph of $y = sin(x) - cos(x)$ for $0 \le x \le 2\pi$, showing graph's maximum and minimum values and where it cuts the <i>x</i> - <i>y</i> -axis.	g clearly the axis and the 3
	3. (a) $12\cos x^\circ - 5\sin x^\circ$ can be expressed in the form $k\cos(x+a)^\circ$, we and $0 \le a < 360$.	where $k > 0$
	Calculate the values of k and a .	4
	(b) (i) Hence state the maximum and minimum values of $12 \cos x^\circ$ -	$-5\sin x^{\circ}$.
	(ii) Determine the values of x , in the interval $0 \le x < 360$, at maximum and minimum values occur.	which these 3
[SQA]	4. (a) Express $\sin x^{\circ} - 3\cos x^{\circ}$ in the form $k\sin(x-a)^{\circ}$ where $k > 0$ and $0 \le a < 360$. Fin the values of k and a.	ıd 4
	(b) Find the maximum value of 5+sin x°-3cos x° and state a value of x for which th maximum occurs.	is 2
[SQA]	5. Solve the simultaneous equations	

$$k \sin x^{\circ} = 5$$
$$k \cos x^{\circ} = 2,$$

where $k \ge 0$ and $0 \le x \le 360$.

[SQA] 6. Express $2 \sin x^\circ - 5 \cos x^\circ$ in the form $k \sin(x - \alpha)^\circ$, $0 \le \alpha < 360$ and k > 0.

4

4

[SQA]	7.	The dep mid	formula $d = 200 + 80(\cos 30t^\circ + \sqrt{3} \sin 30t^\circ)$ gives an approximation to the th of water, d , measured in centimetres, in a harbour t hours after night.	
		(a)	Express $f(t) = \cos 30t^\circ + \sqrt{3} \sin 30t^\circ$ in the form $k \cos(30t - \alpha)^\circ$ and state the values of k and α , where $0 \le \alpha \le 360$.	(4)
		(b)	 Use your result from part (a) to help you sketch the graph of f(t) for 0 ≤ t ≤ 12. 	
			(ii) Hence, on a separate diagram, sketch the graph of d for $0 \le d \le 12$.	(6)
		(c)	What is the "low-water" time at the harbour during the time interval shown on your graph?	(1)
		(d)	If the local fishing fleet needs at least 1.5 metres depth of water to enter the harbour without risk of running aground, between what hours must it avoid entering the harbour during the time interval shown on your	
			graph?	(2)
[SQA]	8.			

- (a) Show that $2\cos(x^\circ + 30^\circ) \sin x^\circ$ can be written as $\sqrt{3}\cos x^\circ 2\sin x^\circ$. 3
- (*b*) Express $\sqrt{3}\cos x^{\circ} 2\sin x^{\circ}$ in the form $k\cos(x^{\circ} + \alpha^{\circ})$ where k > 0 and $0 \le \alpha \le 360$ and find the values of k and α .
- (c) Hence, or otherwise, solve the equation $2\cos(x^{\circ} + 30^{\circ}) = \sin x^{\circ} + 1$, $0 \le x \le 360$.

[SQA] 9. The displacement, *d* units, of a wave after *t* seconds, is given by the formula $d = \cos 20t^{\circ} + \sqrt{3} \sin 20t^{\circ}$.

- (*a*) Express *d* in the form $k \cos(20t^\circ \alpha^\circ)$, where k > 0 and $0 \le \alpha \le 360$. 4
- (*b*) Sketch the graph of *d* for $0 \le t \le 18$.
- (*c*) Find, correct to one decimal place, the values of t, $0 \le t \le 18$, for which the displacement is 1.5 units.

3

4

4

[SQA]	10.	(a)	Express $3\sin x^\circ - \cos x^\circ$ in the form $k\sin(x-\alpha)^\circ$, where	
			$k > 0$ and $0 \le \alpha \le 90$.	(4)
		(b)	Hence find algebraically the values of x between 0 and 180 for which	
			$3\sin x^\circ - \cos x^\circ = \sqrt{5}.$	(4)
		(c)	Find the range of values of x between 0 and 180 for which	
			$3\sin x^\circ - \cos x^\circ \le \sqrt{5}.$	(2)
				\ - /

[SQA] 11. $f(x) = 2\cos x^{\circ} + 3\sin x^{\circ}$.

(a) Express f(x) in the form $k\cos(x-\alpha)^\circ$ where k>0 and $0 \le \alpha < 360$. (4)

(3)

(1)

- (b) Hence solve algebraically f(x) = 0.5 for $0 \le x < 360$.
- [SQA] 12. The function f is defined by $f(x) = 2\cos x^{\circ} 3\sin x^{\circ}$.
 - (a) Show that f(x) can be expressed in the form f(x) = k cos(x + α)° where k > 0 and 0 ≤ α < 360, and determine the values of k and α.
 (4)
 - (b) Hence find the maximum and minimum values of f(x) and the values of x at which they occur, where x lies in the interval 0 ≤ x < 360.
 (4)
 - (c) Write down the minimum value of $(f(x))^2$.

[END OF QUESTIONS]